



# Alliance



## Establishing sustainable solutions to cassava diseases in mainland Southeast Asia

-- Objective 2 Breeding and selection

**Dr. Xiaofei Zhang**

Cassava Breeder

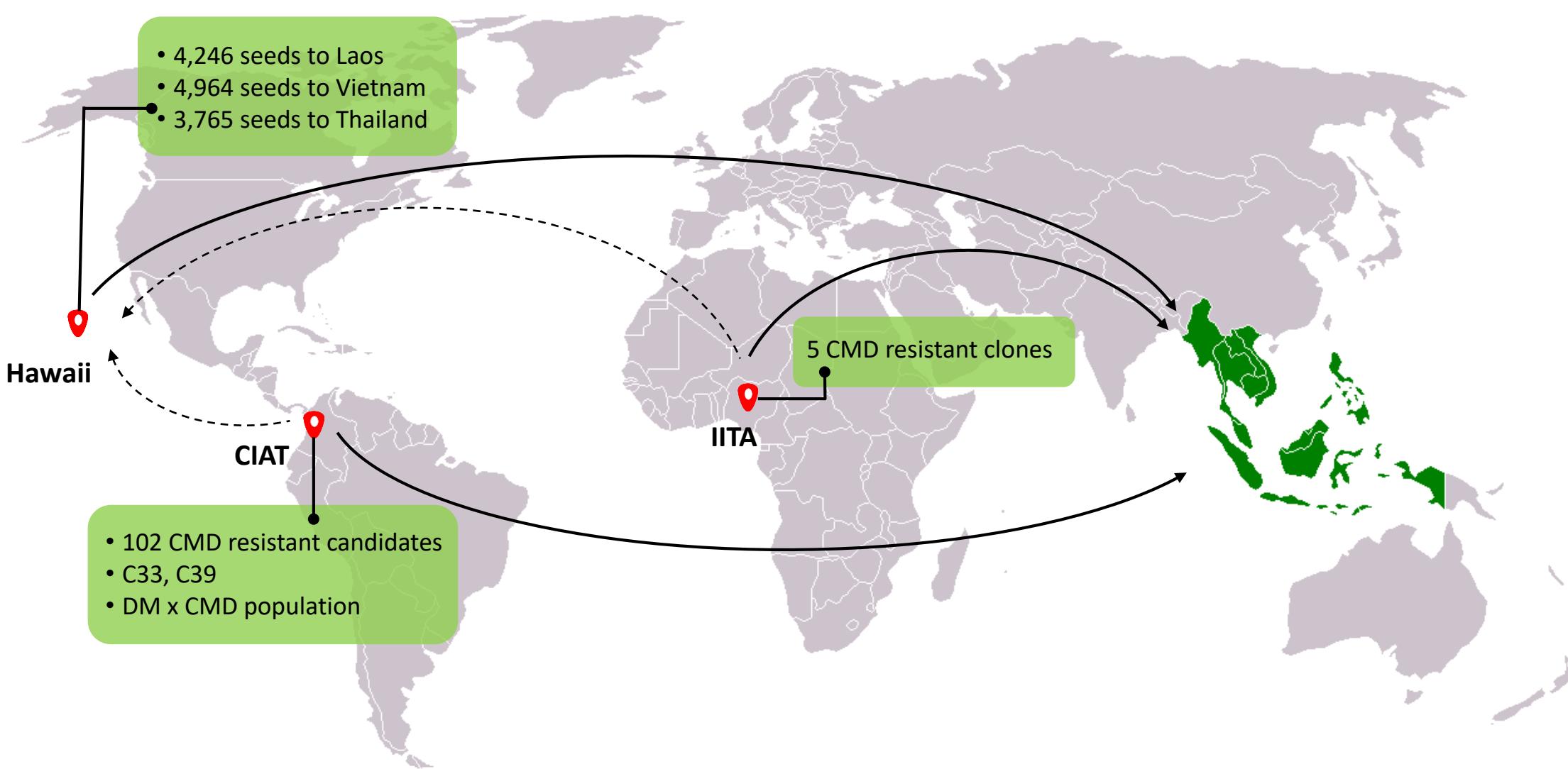
[xiaofei.zhang@cgiar.org](mailto:xiaofei.zhang@cgiar.org)

Project Mid-term Review

23<sup>th</sup> February 2022





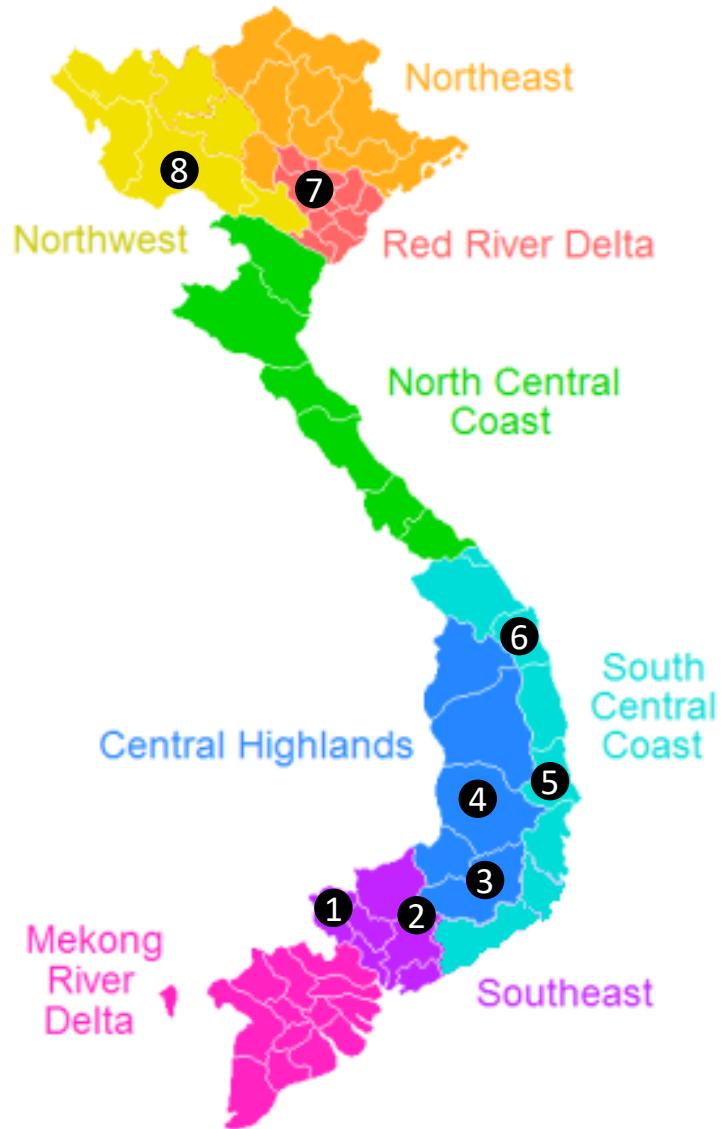

# Alliance



**Objective 2: Enhance the capacity and collaboration** between breeding programs in mainland Southeast Asia to develop new product profiles for commercially viable cassava varieties by **identifying and incorporating** known and novel sources of resistance to Cassava Mosaic Disease (CMD) and Cassava Witches Broom Disease (CWBD) into **national breeding programs**



# Introduce CMD-resistant Germplasm to Southeast Asia




NEXTGEN  
CASSAVA

Alliance



# Breeding Trial Testing Network in Vietnam



- ① Tay Ninh
- ② Dong Nai (HLARC)
- ③ Lam Dong
- ④ Dak Lak
- ⑤ Phu Yen
- ⑥ Quang Ngai
- ⑦ Ha Noi (AGI)
- ⑧ Son La

HLARC, Hung Loc Agricultural Research Center  
AGI, Agricultural Genetics Institute



# Introduce and Evaluate CMD-resistant Germplasm in Vietnam



|                                                                                |                                                            |                                                         |                                                          |                                                                                   |
|--------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|
| <b>AGI</b><br>Ha Noi                                                           | Tay Ninh                                                   | *Multiplication                                         | Tay Ninh<br>Son La                                       | Tay Ninh<br>Dong Nai<br>Quang Ngai<br>Gia Lai<br>Thanh Hoa<br>Quang Tri<br>Son La |
| <b>HLARC</b><br>Tay Ninh<br><br>*Evaluated 142 collections from farmers' field | Tay Ninh<br><br>*Evaluated collections from farmers' field | Dong Nai<br>Tay Ninh<br><br>*Imported seeds from Hawaii | Tay Ninh<br>Dong Nai<br>Dak Lak<br>Phu Yen<br>Quang Ngai | Tay Ninh<br>Dong Nai<br>Dak Lak<br>Phu Yen<br>Quang Ngai                          |

# Share CMD-resistant Germplasm in Southeast Asia

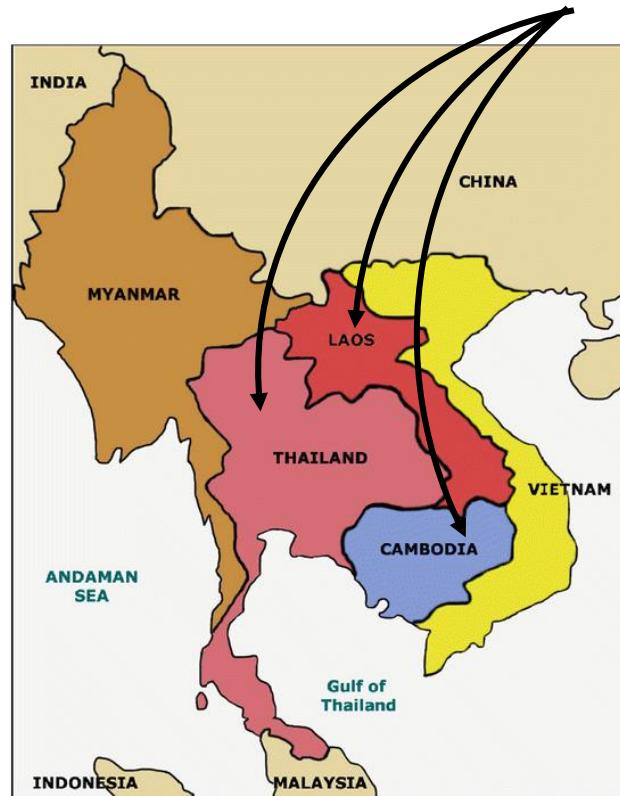
## Introduction

2018-2019  
CIAT and IITA

## Evaluation

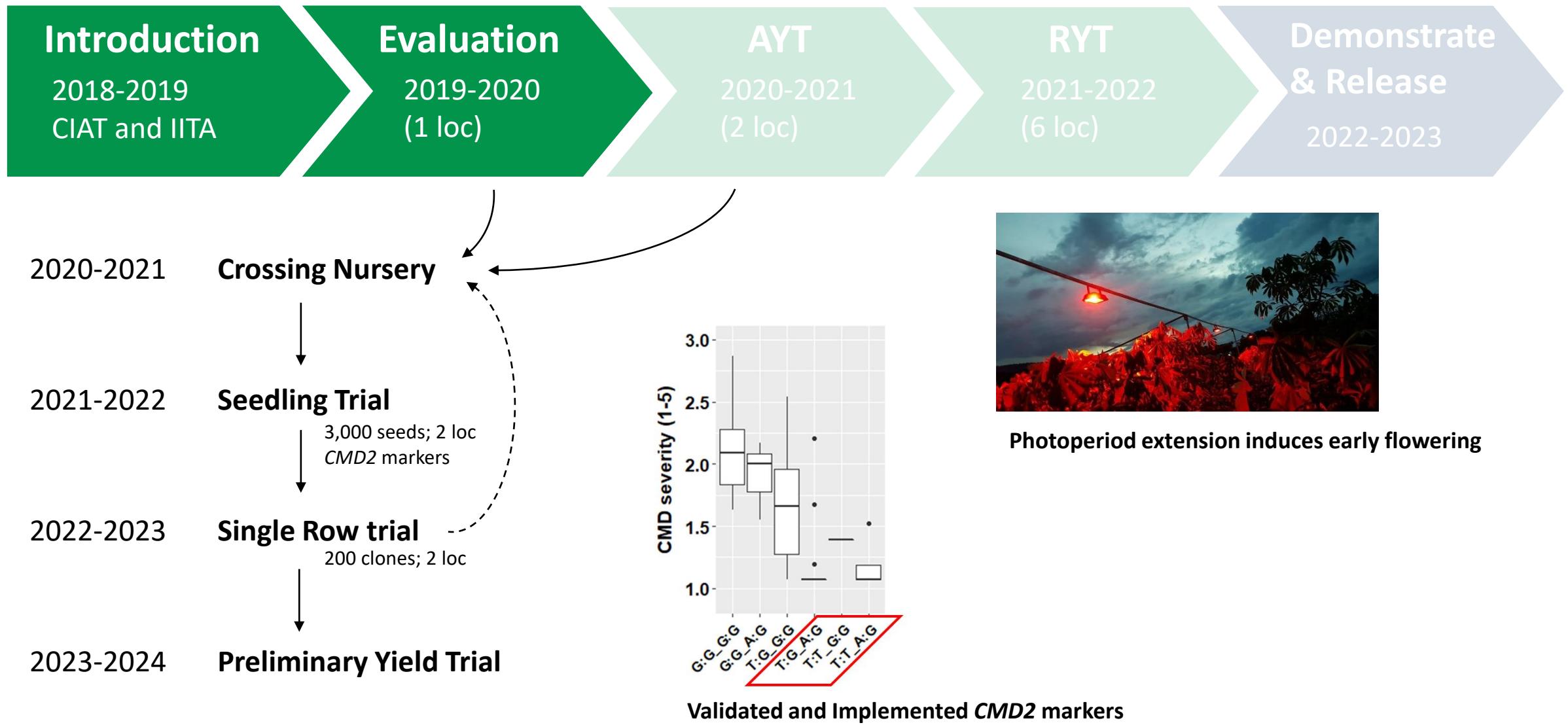
2019-2020  
(1 loc)

## AYT


2020-2021  
(2 loc)

## RYT

2021-2022  
(6 loc)

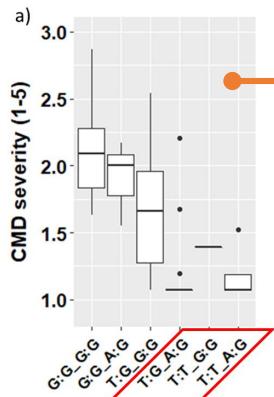

## Demonstrate & Release

2022-2023



- The CMD-resistant clones with the best agronomic performance from CIAT and IITA were shared with **Thailand, Laos and Cambodia**.
- The tissue culture plantlets were sent from **AGI or CIAT**

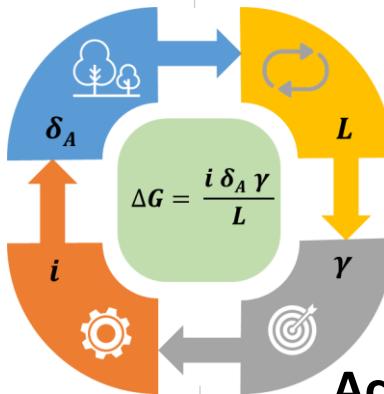
# Develop CMD-resistant Varieties in Vietnam




# Breeding Program Improvement

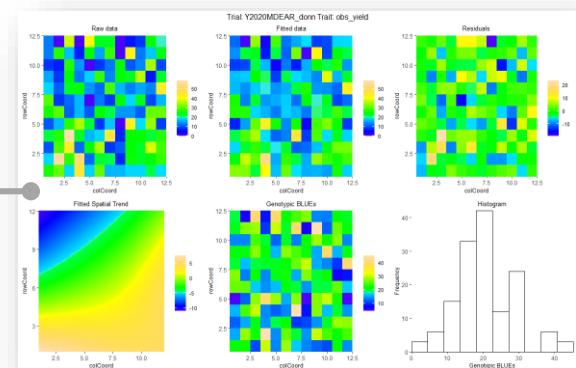
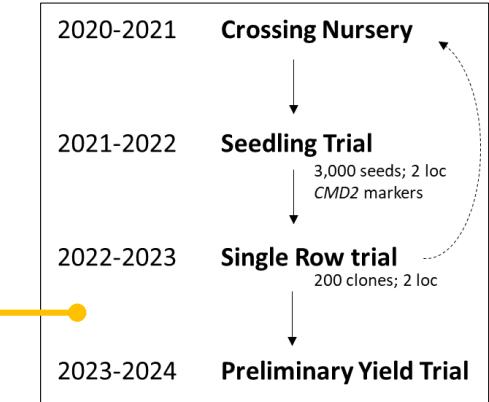


## Genetic Diversity

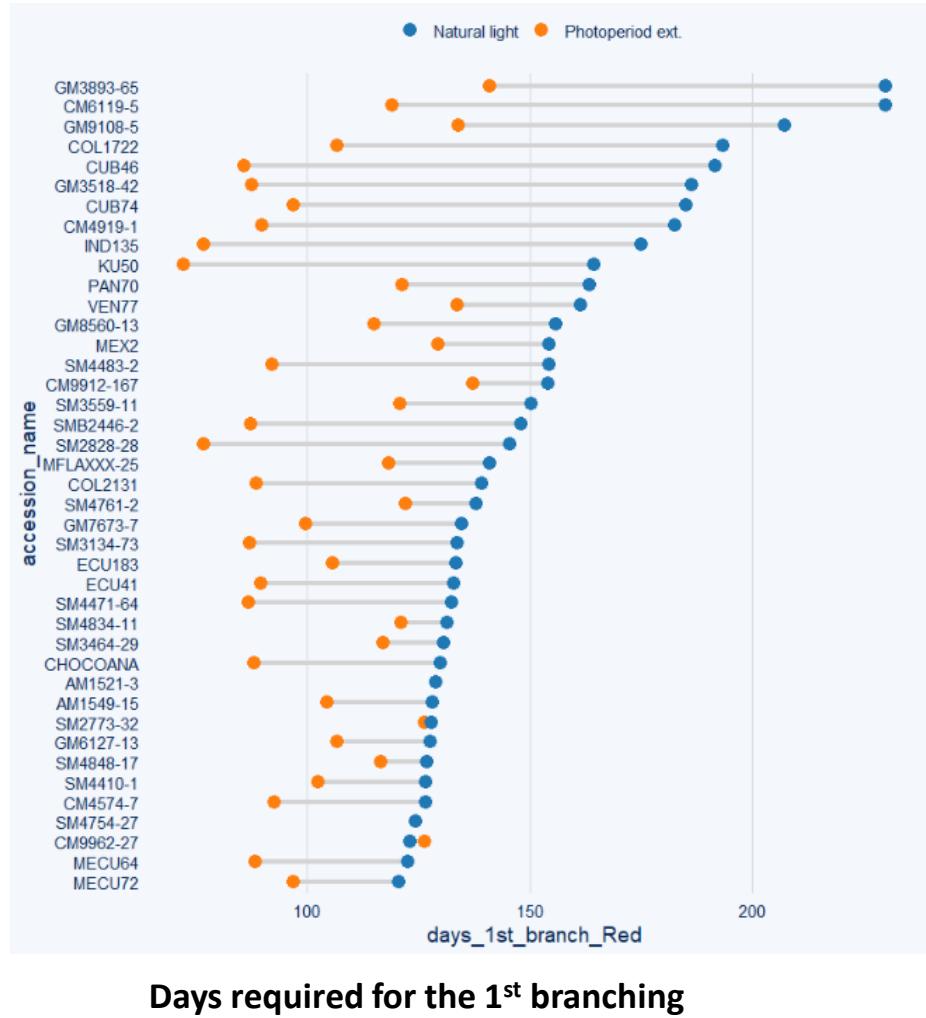
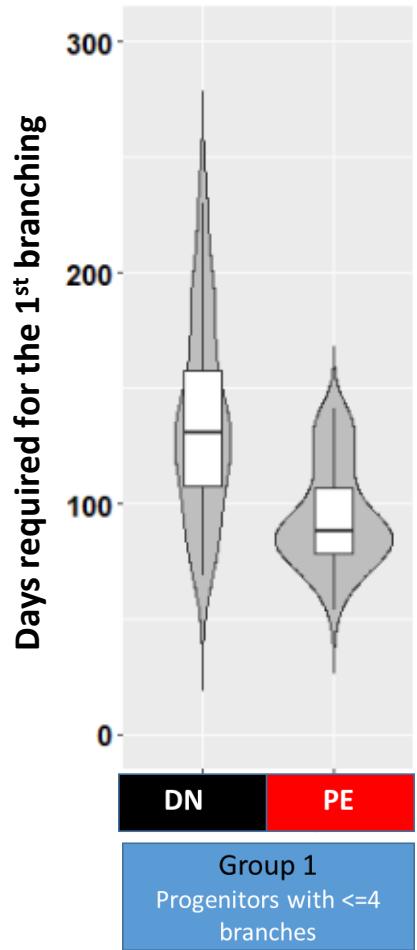

- CMD Resistant Germplasm
- Flower Inducing Technology
- Elite x Elite



Excellence in  
Breeding  
Platform



## Intensity

- MAS for Year1 Selections


## Accuracy

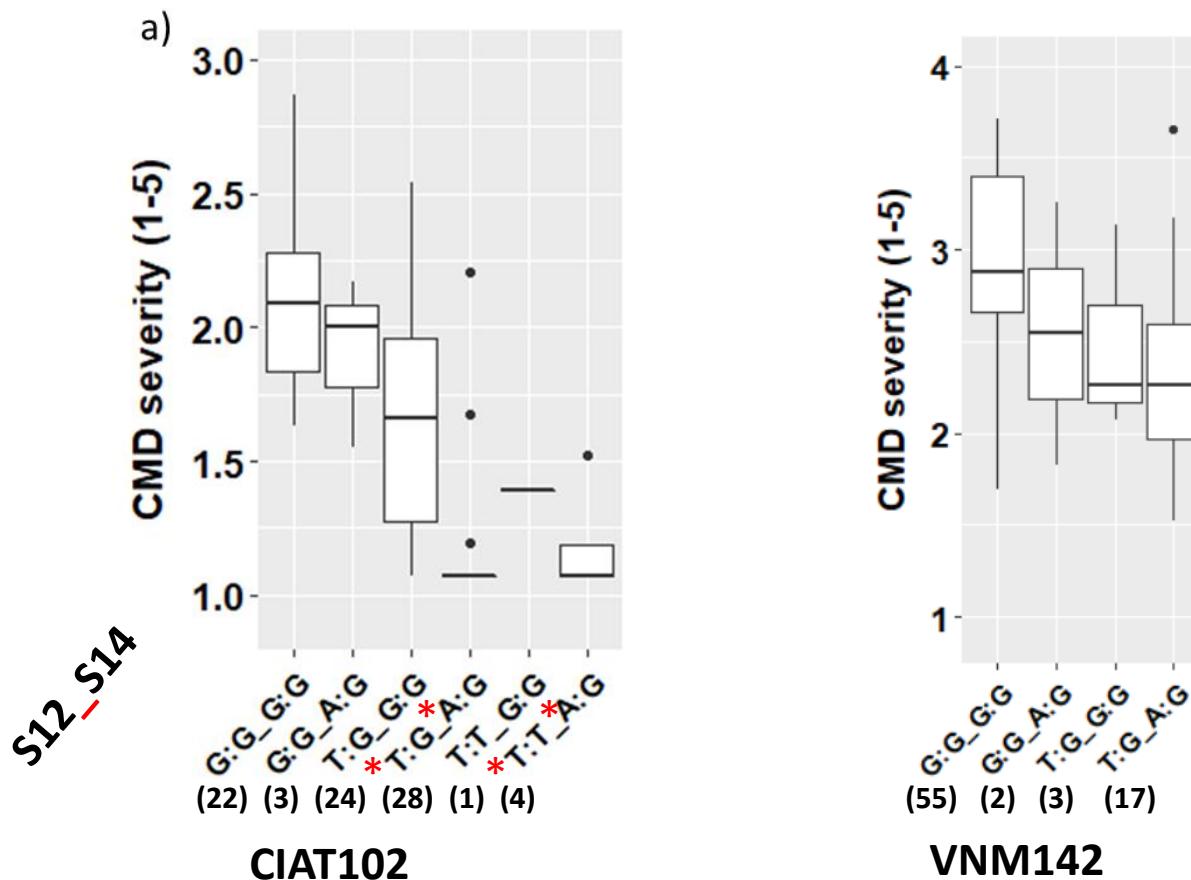
- CassavaBase
- Multiple Environments
- $\geq 4$  Checks, BLUP
- Row-column design



# Photoperiod Extension Induced Early Flowering



# Variation of CMD severity in VNM142 and CIAT102 populations


| Population | Trial                    | Trait      | Mean | Median | Rang      | V <sub>g</sub> | V <sub>e</sub> | H <sup>2</sup> |
|------------|--------------------------|------------|------|--------|-----------|----------------|----------------|----------------|
| VNM142     | 201801MDEAR              | CMD_1.5MAP | 1.56 | 1.43   | 1.00-4.00 | 0.10           | 0.21           | 0.50           |
|            |                          | CMD_3MAP   | 1.87 | 1.75   | 1.00-4.00 | 0.18           | 0.22           | 0.63           |
|            |                          | CMD_6MAP   | 2.23 | 2.20   | 1.00-4.00 | 0.27           | 0.19           | 0.75           |
|            |                          | CMD_10MAP  | 2.82 | 2.86   | 1.19-4.00 | 0.40           | 0.19           | 0.82           |
|            | 201901MDEAR*             | CMD_10MAP  | 2.65 | 2.33   | 1.00-4.12 | 1.30           | 0.04           | 0.99           |
|            | 201902MDEAR <sup>#</sup> | CMD_10MAP  | 2.83 | 2.63   | 1.70-4.10 | 0.62           | 0.11           | 0.94           |
| CIAT102    | 201903MDEAR              | CMD_3MAP   | 1.73 | 1.64   | 1.00-3.77 | 0.42           | 0.12           | 0.91           |

V<sub>g</sub>, total genetic variance among unique clones; V<sub>e</sub>, the variance of residue. The calculation of genetic variance was performed by using the mixed models by fitting replications and clones as random effects.

\*the trials with 3 clones from VNM142 and four checks, HLS11, KM419, KU50 and C33. MDEAR, cassava mosaic disease advanced yield trial.

#the trials with 9 clones from VNM142 and three checks, HLS11, KM419 and KU50.

# *CMD2* Markers Works in Segregation Populations



S12\_7926132 and S14\_4626854

For marker S12, \*T is the resistant allele; For marker S14, \*A is the resistant allele

S12\_7926132 and S14\_4626854 worked well for **segregation populations** (e.g., CIAT102), but not for **diversity populations** (e.g., VNM142)

# New CMD Resistance to SLCMV Identified from VNM142

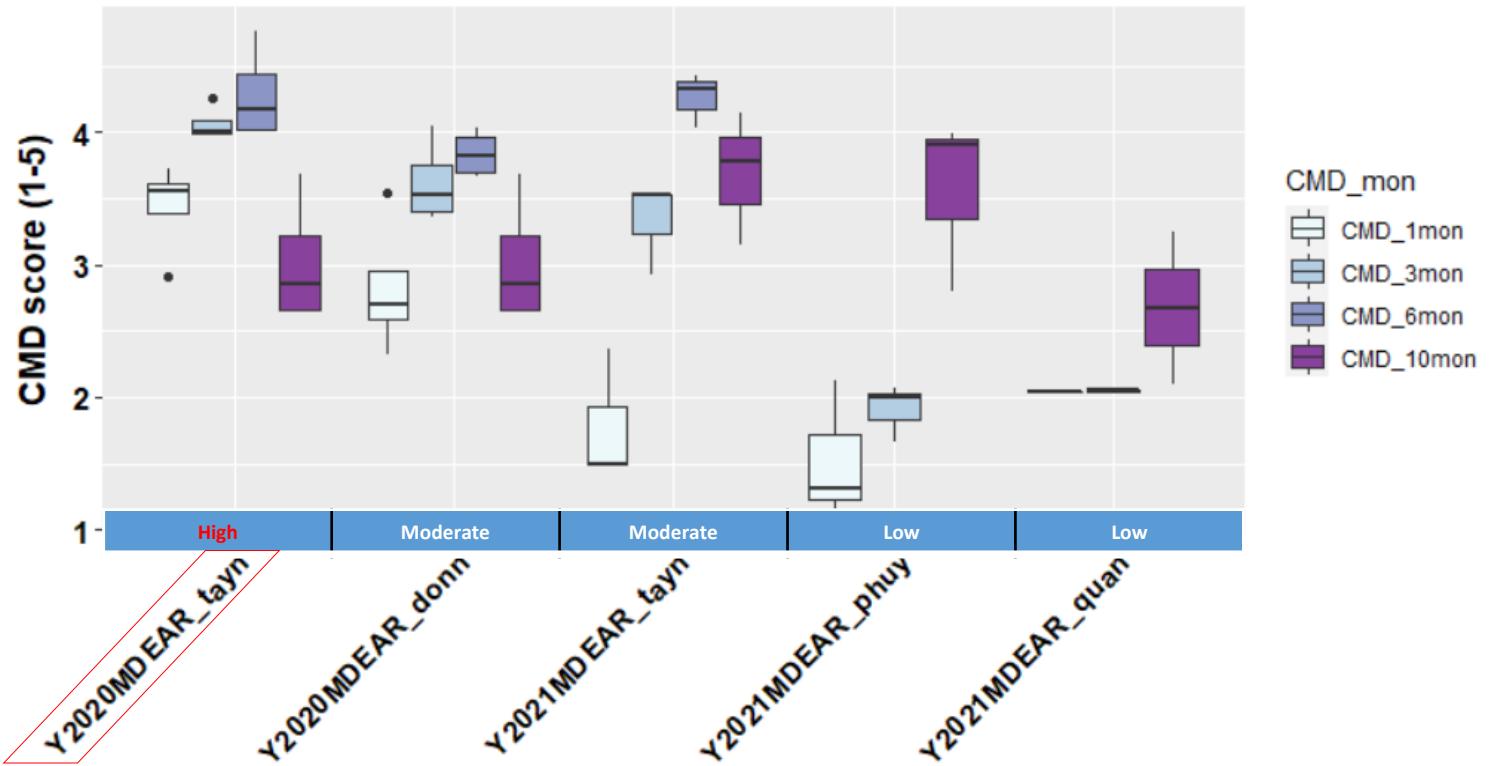
| Genotype/group          | Clone                              | 2018-2019 | 2019-2020 | S12_7926132 | S14_4626854 |
|-------------------------|------------------------------------|-----------|-----------|-------------|-------------|
| UNK-CI-2                | VN19-442                           | 1.5       | 2.3       | T:G         | A:G         |
| CR63_PER262_TAI9        | VN19-1432, VN19-1556               | 1.6       | 1.9       | T:G         | A:G         |
| KM57_VNM8_Xanh Vinh Phu | VN19-1039, VN19-1050               | 1.6       | 1.9       | T:G         | A:G         |
| UNQ-115                 | VN19-773                           | 1.7       | 2.1       | T:G         | A:G         |
| UNK-F                   | VN19-1184, VN19-1194               | 2.0       | 2.6       | T:G         | A:G         |
| UNQ-44                  | VN19-320                           | 1.7       | 1.8       | G:G         | G:G         |
| UNK-AF-2                | VN19-1805                          | 1.8       | NA        | G:G         | A:G         |
| UNK-CH                  | VN19-390                           | 1.9       | 2.2       | G:G         | G:G         |
| KU50_KM94_TAI16         | 11 clone samples (e.g., VN19-1739) | 2.6       | 3.5       | G:G         | G:G         |
| KM140                   | 4 clone samples (e.g., VN19-2659)  | 3.6       | NA        | G:G         | G:G         |
| KM419                   | 2 clone samples (e.g., VN19-2202)  | 3.0       | 4.0       | G:G         | G:G         |
| C33                     | C33                                | NA        | 1.1       | T:G         | A:G         |

BLUP of the CMD score at 10 month after planting was provided here for each unique clone (or group)



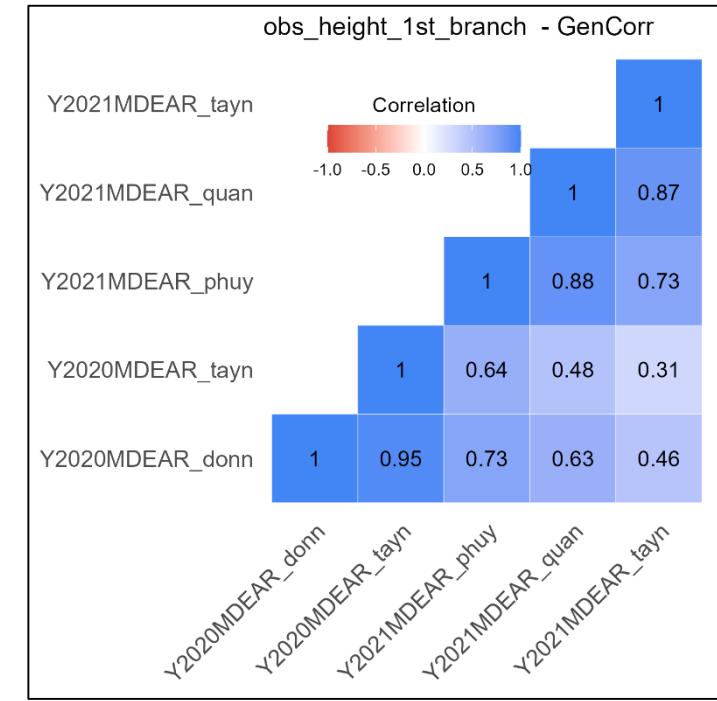
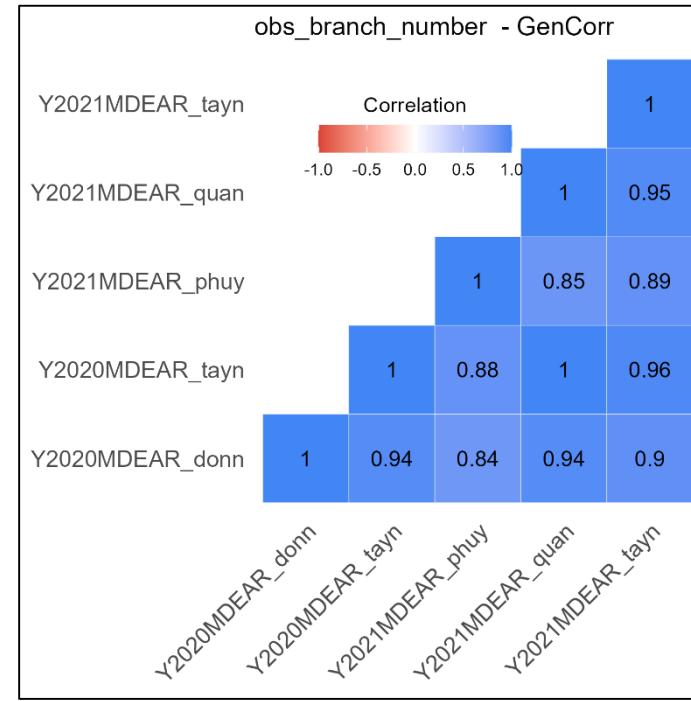
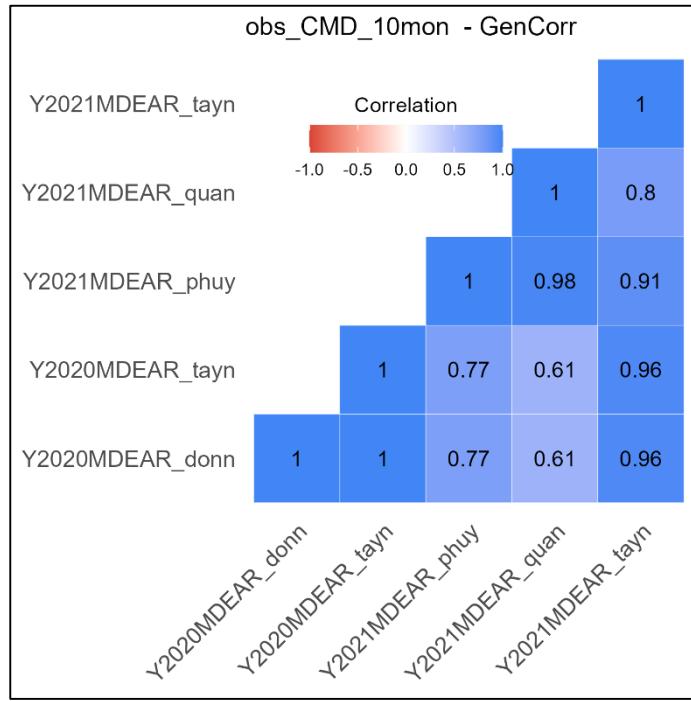
# Five Yield Trials Harvested




- ① Tay Ninh (2020, 2021)
- ② Dong Nai (2020)
- ③ Lam Dong
- ④ Dak Lak
- ⑤ Phu Yen (2021)
- ⑥ Quang Ngai (2021)
- ⑦ Ha Noi (AGI)
- ⑧ Son La

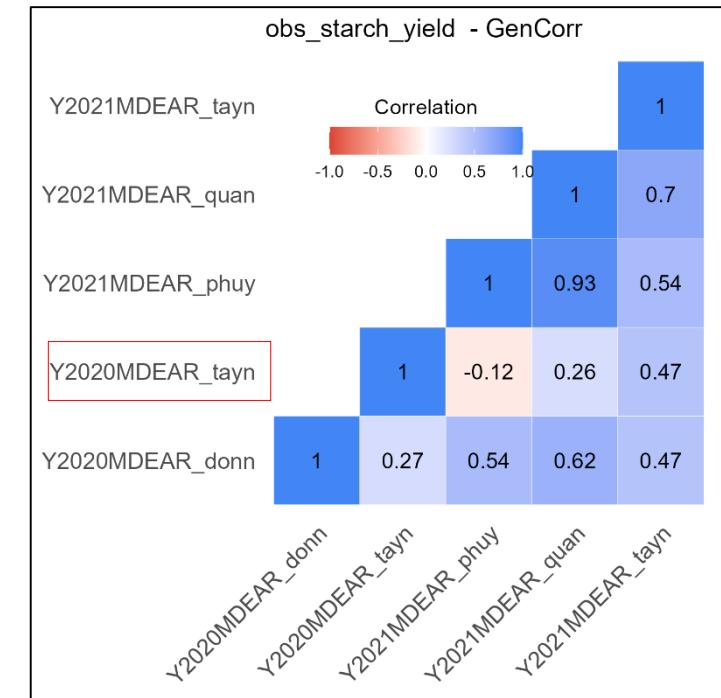
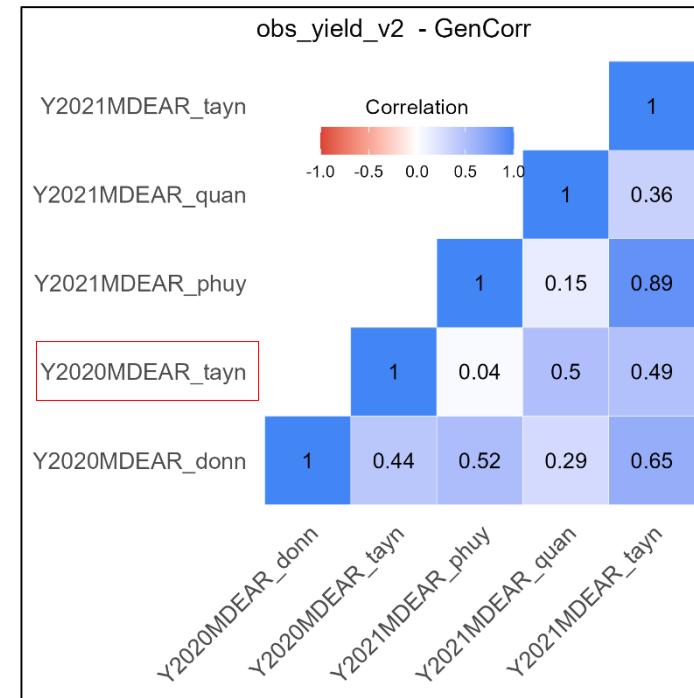
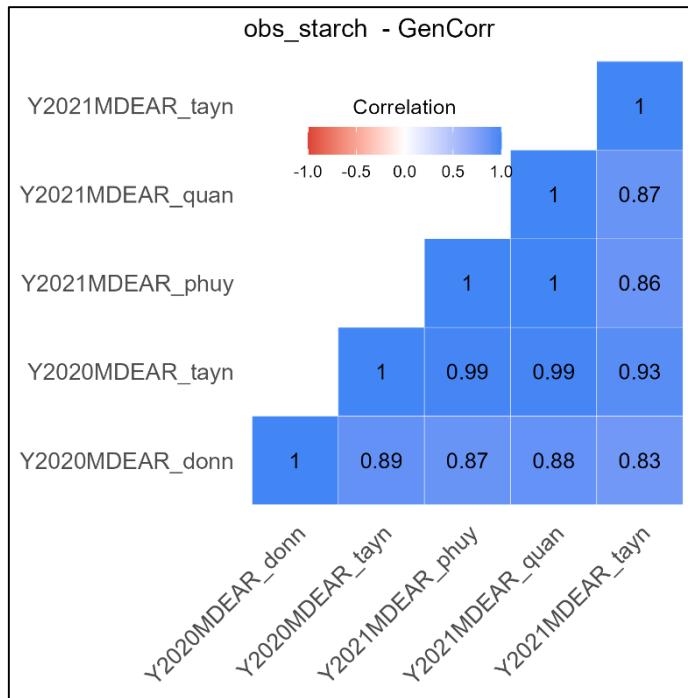
# Good Yield Trial Quality – Moderate to High Heritability

| trial           | CMD_1mon | CMD_3mon | CMD_6mon | CMD_10mon | height | height_1st_branch | branch_number | starch | yield_v2 | starch_yield | harvest_index |
|-----------------|----------|----------|----------|-----------|--------|-------------------|---------------|--------|----------|--------------|---------------|
| Y2020MDEAR_donn | 0.99     | 0.98     | 0.99     | 0.96      | 0.49   | 0.93              | 0.92          | 0.75   | 0.67     | 0.49         | NA            |
| Y2020MDEAR_tayn | 0.98     | 1        | 0.99     | 0.96      | 0.7    | 0.85              | 0.87          | 0.49   | 0.82     | 0.76         | NA            |
| Y2021MDEAR_phuy | 0.9      | 0.94     | NA       | 0.98      | 0.87   | 0.8               | 0.94          | 0.95   | 0.61     | 0.5          | 0.91          |
| Y2021MDEAR_quan | 1        | 1        | NA       | 0.99      | 0.53   | 0.72              | 0.89          | 0.92   | 0.77     | 0.76         | 0.95          |
| Y2021MDEAR_tayn | 0.91     | 0.98     | 0.98     | 0.96      | 0.88   | 0.81              | 0.97          | 0.88   | 0.54     | 0.4          | 0.78          |


# Different CMD Pressure






# Genetic Correlation among Environments

## - CMD and Plant Type



# Genetic Correlation among Environments

## - Starch Yield



# Multi-environment BLUP

-- Summary of the best clones and checks

| clone     | CMD_10mon | height_1st_branch | branch_number | starch (%) | yield (ton/ha) | starch_yield (ton/ha) |
|-----------|-----------|-------------------|---------------|------------|----------------|-----------------------|
| KU50      | 3.0       | 200               | 0.4           | 27.1       | 28.0           | 8.0                   |
| TMEB419   | 1.1       | 212               | 0.7           | 24.3       | 30.5           | 7.9                   |
| CR24-16   | 1.0       | 249               | 0.0           | 26.0       | 25.5           | 7.6                   |
| CR13-8    | 1.0       | 190               | 2.5           | 24.5       | 26.8           | 7.2                   |
| CR24-3    | 1.0       | 110               | 2.9           | 22.3       | 28.7           | 7.1                   |
| CR52A-2   | 1.0       | 136               | 3.2           | 24.2       | 26.7           | 7.1                   |
| AR9-48    | 1.0       | 204               | 2.4           | 25.4       | 27.5           | 6.7                   |
| CR52A-4   | 0.9       | 89                | 3.3           | 27.1       | 24.7           | 6.7                   |
| IBA980581 | 1.0       | 159               | 0.7           | 20.5       | 29.1           | 6.1                   |
| IBA972205 | 1.0       | 98                | 2.8           | 18.5       | 29.1           | 5.9                   |
| IBA920057 | 1.0       | 251               | 1.3           | 22.8       | 23.7           | 5.8                   |
| IBA980505 | 1.0       | 114               | 2.2           | 18.9       | 23.3           | 5.2                   |
| HL-S11    | 3.7       | 225               | 0.0           | 28.3       | 19.2           | 5.8                   |
| KM140     | 3.5       | 191               | 0.2           | 21.4       | 22.9           | 5.8                   |
| KM419     | 3.5       | 147               | 0.9           | 24.7       | 19.8           | 5.7                   |
| KM505     | 2.6       | 215               | 0.6           | 25.8       | 19.9           | 5.3                   |

The clones were sorted based on starch yield.

Good  
Bad



# Multi-environment BLUP

-- Summary of the best clones and checks

CIAT  
&  
IITA

|                   | BLUE – single environment mean |           |           |          |           |           | BLUP      |           |           |          |           |                          | BLUE – single environment mean |           |           |          |           |                          | BLUP      |           |           |          |           |                          |     |     |
|-------------------|--------------------------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|----------|-----------|--------------------------|--------------------------------|-----------|-----------|----------|-----------|--------------------------|-----------|-----------|-----------|----------|-----------|--------------------------|-----|-----|
|                   | 2020_donn                      | 2020_tayn | 2021_tayn | 2021phuy | 2021_quan | CMD_10mon | 2020_donn | 2020_tayn | 2021_tayn | 2021phuy | 2021_quan | starch_yield<br>(ton/ha) | 2020_donn                      | 2020_tayn | 2021_tayn | 2021phuy | 2021_quan | starch_yield<br>(ton/ha) | 2020_donn | 2020_tayn | 2021_tayn | 2021phuy | 2021_quan | starch_yield<br>(ton/ha) |     |     |
| CIAT<br>&<br>IITA | KU50                           | 4.0       | 4.0       | 3.4      | 2.3       | 1.0       | 3.0       | 13.3      | 2.4       | 11.0     | 6.4       | 7.8                      | 8.0                            | 7.6       | 13.5      | 10.1     | 4.4       | 9.0                      | 7.9       | 7.0       | 8.5       | 9.4      | 4.4       | 6.1                      | 7.2 |     |
|                   | TMEB419                        | 1.0       | 1.0       | 1.4      | 1.3       | 1.0       | 1.1       | 7.6       | 13.5      | 10.1     | 4.4       | 9.0                      | 7.9                            | 5.8       | 10.2      | 11.7     | 3.3       | 8.0                      | 7.6       | 8.7       | 7.3       | 12.7     | NA        | NA                       | 7.1 |     |
|                   | CR24-16                        | 1.0       | 1.0       | 1.1      | 1.1       | 1.0       | 1.0       | 5.8       | 10.2      | 11.7     | 3.3       | 8.0                      | 7.6                            | 7.0       | 8.5       | 9.4      | 4.4       | 6.1                      | 7.2       | 7.0       | 8.5       | 9.4      | 4.4       | 6.1                      | 7.2 |     |
|                   | CR13-8                         | 1.0       | 1.0       | 1.0      | 1.0       | 1.0       | 1.0       | 7.0       | 8.5       | 9.4      | 4.4       | 6.1                      | 7.2                            | 8.7       | 7.3       | 12.7     | NA        | NA                       | 7.1       | 8.7       | 8.9       | NA       | NA        | NA                       | 7.1 |     |
|                   | CR24-3                         | 1.0       | 1.0       | 1.0      | NA        | NA        | 1.0       | 8.7       | 7.3       | 12.7     | NA        | NA                       | 7.1                            | 8.7       | 8.9       | NA       | NA        | NA                       | 7.1       | 8.1       | 6.6       | 9.6      | 4.5       | 8.6                      | 6.7 |     |
|                   | CR52A-2                        | 1.0       | 1.0       | NA       | NA        | NA        | 1.0       | 8.7       | 8.9       | NA       | NA        | NA                       | 7.1                            | 8.7       | 8.9       | NA       | NA        | NA                       | 7.1       | 7.2       | 8.1       | 9.2      | NA        | 6.5                      | 6.7 |     |
|                   | AR9-48                         | 1.0       | 1.0       | 1.1      | 1.1       | 1.0       | 1.0       | 8.1       | 6.6       | 9.6      | 4.5       | 8.6                      | 6.7                            | 7.2       | 8.1       | 9.2      | NA        | NA                       | NA        | 7.1       | 7.2       | 8.1      | 9.2       | 4.5                      | 8.6 | 6.7 |
|                   | CR52A-4                        | 0.9       | 0.9       | 0.9      | NA        | 1.0       | 0.9       | 7.2       | 8.1       | 9.2      | NA        | 6.5                      | 6.7                            | 7.2       | 8.1       | 9.2      | NA        | NA                       | NA        | 7.1       | 7.2       | 8.1      | 9.2       | NA                       | 6.5 | 6.7 |
|                   | IBA980581                      | 1.1       | 1.1       | 1.0      | 0.9       | 1.0       | 1.0       | 4.7       | 13.1      | 8.1      | 2.6       | 5.9                      | 6.1                            | 5.5       | 7.7       | 11.6     | 3.8       | 3.1                      | 5.9       | 5.5       | 7.7       | 10.6     | 4.1       | NA                       | 5.8 |     |
|                   | IBA972205                      | 1.0       | 1.0       | 0.9      | 1.1       | 1.0       | 1.0       | 5.5       | 7.7       | 11.6     | 3.8       | 3.1                      | 5.9                            | 5.5       | 4.8       | 6.1      | NA        | 2.1                      | NA        | 5.9       | 5.5       | 4.8      | 10.6      | 4.1                      | NA  | 5.8 |
|                   | IBA920057                      | 1.1       | 1.1       | 1.1      | 0.9       | NA        | 1.0       | 5.5       | 4.8       | 10.6     | 4.1       | NA                       | 5.8                            | 4.8       | 6.1       | NA       | 2.1       | NA                       | 5.8       | 4.8       | 6.1       | 11.6     | 3.8       | 3.1                      | 5.9 |     |
|                   | IBA980505                      | 1.0       | 1.0       | NA       | 1.0       | NA        | 1.0       | 4.8       | 6.1       | NA       | 2.1       | NA                       | 5.2                            | 4.8       | 6.1       | NA       | 2.1       | NA                       | 5.2       | 4.8       | 6.1       | NA       | 2.1       | NA                       | 5.2 |     |
|                   | HL-S11                         | 3.1       | 3.1       | 4.1      | 4.0       | NA        | 3.7       | 11.6      | 1.1       | 7.0      | 3.4       | NA                       | 5.8                            | 7.5       | 6.0       | 6.4      | 3.2       | NA                       | 5.8       | 7.5       | 6.0       | 6.4      | 3.2       | NA                       | 5.8 |     |
|                   | KM140                          | 2.7       | 2.7       | 3.1      | 3.9       | NA        | 3.5       | 7.5       | 6.0       | 6.4      | 3.2       | NA                       | 5.8                            | 5.0       | 3.4       | 6.5      | 3.2       | 5.9                      | 5.7       | 5.0       | 3.4       | 6.5      | 3.2       | NA                       | 5.8 |     |
|                   | KM419                          | 3.7       | 3.7       | 3.8      | 2.8       | 3.3       | 3.5       | 5.0       | 3.4       | 6.5      | 3.2       | 5.9                      | 5.7                            | 6.4       | 5.6       | NA       | NA        | 6.2                      | 5.3       | 5.0       | 3.4       | 6.5      | 3.2       | 5.9                      | 5.7 |     |
|                   | KM505                          | 2.6       | 2.6       | NA       | NA        | 2.1       | 2.6       | 6.4       | 5.6       | NA       | NA        | 6.2                      | 5.3                            | 2.6       | 2.1       | 2.6      | NA        | NA                       | 5.3       | 2.6       | 2.1       | 2.6      | NA        | 6.2                      | 5.3 |     |

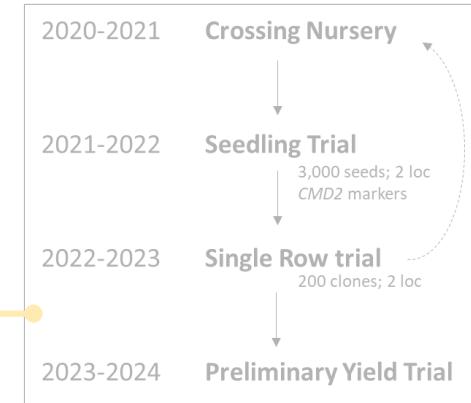
The clones were sorted based on starch yield.

# Multi-environment BLUP

-- Summary of the best clones and checks

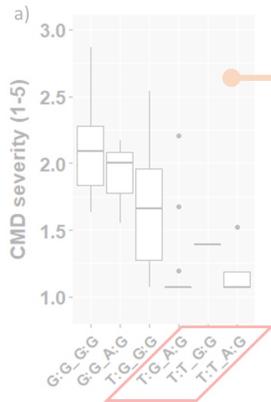
CIAT  
&  
IITA

|      |           | BLUE – single environment mean |           |           |          |           |     | BLUP                     |           |           |           |          |           | BLUE – single environment mean |            |           |           |           |          | BLUP      |  |            |           |           |           |          |           |  |
|------|-----------|--------------------------------|-----------|-----------|----------|-----------|-----|--------------------------|-----------|-----------|-----------|----------|-----------|--------------------------------|------------|-----------|-----------|-----------|----------|-----------|--|------------|-----------|-----------|-----------|----------|-----------|--|
|      |           |                                |           |           |          |           |     | starch_yield<br>(ton/ha) |           |           |           |          |           |                                | starch (%) |           |           |           |          |           |  | starch (%) |           |           |           |          |           |  |
|      |           | 2020_donn                      | 2020_tayn | 2021_tayn | 2021phuy | 2021_quan |     |                          | 2020_donn | 2020_tayn | 2021_tayn | 2021phuy | 2021_quan |                                |            | 2020_donn | 2020_tayn | 2021_tayn | 2021phuy | 2021_quan |  |            | 2020_donn | 2020_tayn | 2021_tayn | 2021phuy | 2021_quan |  |
|      | KU50      | 13.3                           | 2.4       | 11.0      | 6.4      | 7.8       | 8.0 |                          | 28.4      | 28.2      | 27.2      | 24.1     | 29.1      |                                | 27.1       |           |           |           |          |           |  |            |           |           |           |          |           |  |
| HN1  | TMEB419   | 7.6                            | 13.5      | 10.1      | 4.4      | 9.0       | 7.9 |                          | 26.8      | 29.7      | 25.3      | 20.0     | 24.1      |                                | 24.3       |           |           |           |          |           |  |            |           |           |           |          |           |  |
| HN36 | CR24-16   | 5.8                            | 10.2      | 11.7      | 3.3      | 8.0       | 7.6 |                          | 27.1      | 30.9      | 27.0      | 22.5     | 27.2      |                                | 26.0       |           |           |           |          |           |  |            |           |           |           |          |           |  |
|      | CR13-8    | 7.0                            | 8.5       | 9.4       | 4.4      | 6.1       | 7.2 |                          | 25.9      | 29.5      | 25.6      | 20.8     | 25.3      |                                | 24.5       |           |           |           |          |           |  |            |           |           |           |          |           |  |
|      | CR24-3    | 8.7                            | 7.3       | 12.7      | NA       | NA        | 7.1 |                          | 22.5      | 27.7      | 24.7      | NA       | NA        |                                | 22.3       |           |           |           |          |           |  |            |           |           |           |          |           |  |
|      | CR52A-2   | 8.7                            | 8.9       | NA        | NA       | NA        | 7.1 |                          | 23.8      | 30.7      | NA        | NA       | NA        |                                | 24.2       |           |           |           |          |           |  |            |           |           |           |          |           |  |
| HN97 | AR9-48    | 8.1                            | 6.6       | 9.6       | 4.5      | 8.6       | 6.7 |                          | 25.8      | 25.8      | 25.9      | 23.2     | 25.8      |                                | 25.4       |           |           |           |          |           |  |            |           |           |           |          |           |  |
|      | CR52A-4   | 7.2                            | 8.1       | 9.2       | NA       | 6.5       | 6.7 |                          | 26.8      | 29.6      | 29.3      | NA       | 26.9      |                                | 27.1       |           |           |           |          |           |  |            |           |           |           |          |           |  |
| HN80 | CR27-20   | 8.9                            | 7.4       | 8.9       | NA       | 4.6       | 6.5 |                          | 25.9      | 30.4      | 26.5      | NA       | 26.4      |                                | 26.3       |           |           |           |          |           |  |            |           |           |           |          |           |  |
| HN5  | IBA980581 | 4.7                            | 13.1      | 8.1       | 2.6      | 5.9       | 6.1 |                          | 21.0      | 27.1      | 20.5      | 18.0     | 19.8      |                                | 20.5       |           |           |           |          |           |  |            |           |           |           |          |           |  |
| HN3  | IBA972205 | 5.5                            | 7.7       | 11.6      | 3.8      | 3.1       | 5.9 |                          | 21.4      | 26.1      | 21.0      | 12.8     | 14.2      |                                | 18.5       |           |           |           |          |           |  |            |           |           |           |          |           |  |
|      | IBA920057 | 5.5                            | 4.8       | 10.6      | 4.1      | NA        | 5.8 |                          | 22.0      | 25.8      | 26.6      | 19.0     | NA        |                                | 22.8       |           |           |           |          |           |  |            |           |           |           |          |           |  |
|      | IBA980505 | 4.8                            | 6.1       | NA        | 2.1      | NA        | 5.2 |                          | 21.4      | 23.5      | NA        | 14.8     | NA        |                                | 18.9       |           |           |           |          |           |  |            |           |           |           |          |           |  |
|      | HL-S11    | 11.6                           | 1.1       | 7.0       | 3.4      | NA        | 5.8 |                          | 29.0      | 29.1      | 27.6      | 27.1     | NA        |                                | 28.3       |           |           |           |          |           |  |            |           |           |           |          |           |  |
|      | KM140     | 7.5                            | 6.0       | 6.4       | 3.2      | NA        | 5.8 |                          | 21.3      | 27.1      | 23.3      | 17.9     | NA        |                                | 21.4       |           |           |           |          |           |  |            |           |           |           |          |           |  |
|      | KM419     | 5.0                            | 3.4       | 6.5       | 3.2      | 5.9       | 5.7 |                          | 23.8      | 30.7      | 23.8      | 22.5     | 23.0      |                                | 24.7       |           |           |           |          |           |  |            |           |           |           |          |           |  |
|      | KM505     | 6.4                            | 5.6       | NA        | NA       | 6.2       | 5.3 |                          | 25.8      | 31.3      | NA        | NA       | 27.9      |                                | 25.8       |           |           |           |          |           |  |            |           |           |           |          |           |  |


The clones were sorted based on starch yield.

# Breeding Program Improvement (cont.)



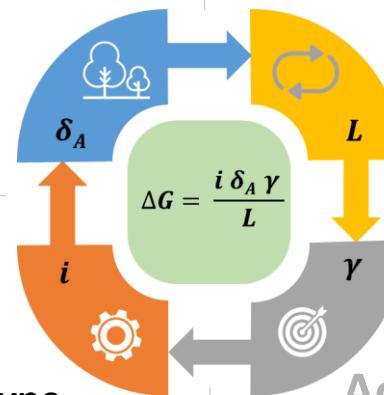

## Genetic Diversity

- CMD Resistant Germplasm
- Flower Inducing Technology
  - Elite x Elite
- **Witches' Broom Resistance**



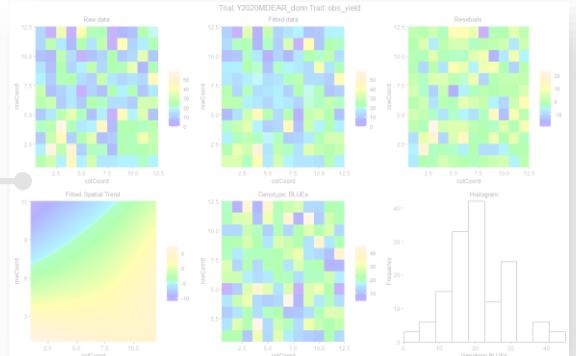
## Duration of Selection Cycle

- Rapid Cycling – 3 years/cycle
- **Genomics-assisted Breeding**




**Intensity**

- **MAS for DM and Plant Type**




Excellence in  
Breeding  
Platform



## Accuracy

- CassavaBase
- Multiple Environments
- $\geq 4$  Checks, BLUP
- Row-column design
- **Fieldbook and Barcode**
- **Determine TPE**
- **Stage&gate System**
- **Quality Control**





RESEARCH  
PROGRAM ON  
Roots, Tubers  
and Bananas



Australian Government

Australian Centre for  
International Agricultural Research



NEXTGEN  
CASSAVA



CAVAC  
Innovation in Agriculture



giz  
Deutsche Gesellschaft  
für Internationale  
Zusammenarbeit (GIZ) GmbH

AIDC  
Your  
Investment Partner

Asia Investment, Development & Construction Sole Co., Ltd.



ບໍລິການ-ສິ່ງເສີມກະສິກຳຮອບດ້ານ  
LURAS  
Lao Upland  
Rural  
Advisory  
Service



WINROCK  
INTERNATIONAL

LUX  
DEV  
Luxembourg Development  
Cooperation Agency

Mekong Timber  
Plantations Ltd