

Propagating cassava plants using aeroponic culture at Hung Loc Agricultural Research Center

Dr. Nguyen Huu Hy

Ms. Pham Thi Nhan

Ms. Nguyen Thi My

outline

Why do we need the aeroponics system?

What is the origin of aeroponics system

How to design aeroponic system?

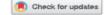
How does it work?

What are advantages and disadvantages of the system?

I. Why do we need the aeroponics system?

- Cassava is a vegetatively propagated crop -> easily infected by any certain diseases in large scale
- In Tay Ninh province,
 92,6% of planting area
 was infected with CMD
 (Tay Ninh-SubDPP, 2019)
 -> similar scenario for
 Dong Nai soon.

I. The origin of our aeroponics system



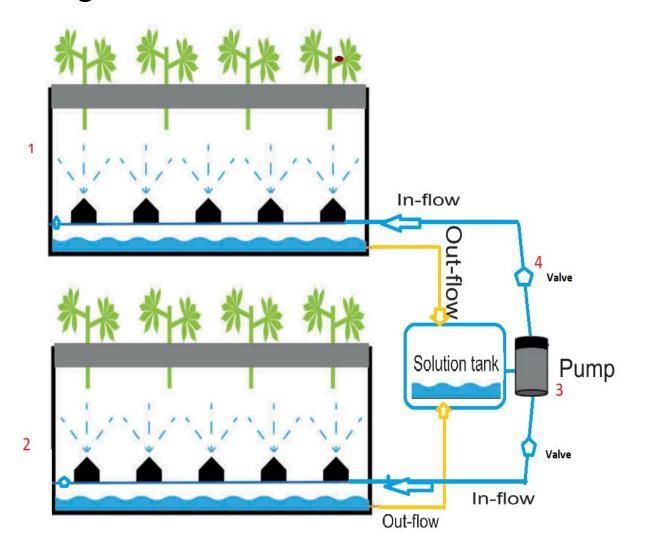
Vietnam National University of Agriculture

JOURNAL OF CROP IMPROVEMENT https://doi.org/10.1080/15427528.2019.1673271

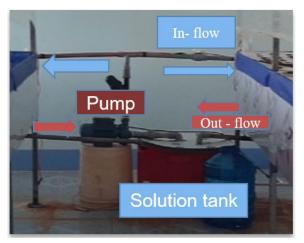
An efficient method of propagating cassava plants using aeroponic culture

Hiroki Tokunaga (oa,b*, Nguyen Hai Anha,c*, Nguyen Van Donga,c, Le Huy Hama,c, Nguyen Thi Hanha,c, Nguyen Hunga,c, Manabu Ishitania,d, Le Ngoc Tuana,c, Yoshinori Utsumia,b, Nguyen Anh Vua,c, and Motoaki Seki (oa,b,e,f)

^aInternational Laboratory for Cassava Molecular Breeding (ILCMB), AGI, Hanoi, Vietnam; ^bRIKEN, Center for Sustainable Resource Science, Kanagawa, Japan; ^cAgricultural Genetics Institute (AGI), Hanoi, Vietnam; ^dInternational Center for Tropical Agriculture (CIAT), Cali, Colombia; ^eRIKEN Cluster for Pioneering Research, Saitama, Japan; ^fKihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan


https://doi.org/10.1080/15427528.2019.1673271

Stock Sol.		Molecular weight	Concentration µM (Final)	g/L	g/100 L	Stock (20X) g/L	Stock (40X) g/3L
	Ammonium Nitrate (NH4NO3)	80.1	300	0.024	2.403	0.4806	2.8836
	Potassium Sulfate (K2SO4)	174.3	300	0.0523	5.229	1.0458	6.2748
	Sodium Phosphate (Na2HPO4)	142	180	0.0256	2.556	0.5112	3.0672
1	Calcium Chloride Dehydrate (CaCl2.2H2O)	147	360	0.0529	5.292	1.0584	6.3504
	Magnesium Sulfate Heptahydrate (MgSO4.7H2O)	264.5	460	0.1134	11.339	2.2678	13.6068
	Ethylendiamineteraacetic acid iron (III) Sodium Salt (FeIII EDTA)	367.1	45	0.0165	1.652	0.3304	1.9824
	Hydrochloric acid (HCl)		adjust pH 6.0				
							Stock (5000X)
							g/100mL
	Boric acid (H3BO3)	61.83	18	0.0011	0.1113	0.5565	
	Manganese (II) Sulphate Monohydrate (MnSO4.H2O)	169	4.6	0.0008	0.0777	0.3885	
2	Zinc Sulfate Hepthydrate (ZnSO4.7H2O)	287.5	1.5	0.0004	0.0431	0.2155	
	Cupric Sulfate (CuSO4)	249.7	1.5	0.0004	0.0375	0.1875	


Note: both stocks look cloudy after making. After add stocks into water, check pH again to make sure pH of final solution is 6.0

III. HLARC aeroponic system

1. Design:

III. HLARC aeroponic system:

2. Technical Index:

Index	Value
Number of lignified cuttings can be multiplied/ system	300
Number of immature cuttings can be multiplied/ system	450
Media	An Thuat Phuoc hydroponic stock
рН	6.0 (weekly monitor)
Light/Dark period	12h/12h
Spray/Stop period	30-50 s/7-10min.
Propagation Rate	x3 after 10 days (w/ continuous material)

III. HLARC aeroponic system:

3. Process:

- 1 young stem can be cut into 3 part (2-3 nodes each)
- After transferring cover the whole system to maintain optimum humidity

TN1 soil mix

1. Preparing input material

2. Transfer material to the system

3. 10 days to initiate roots

4. Transfer young plants to soil pots

5. Adapt in screenhouse for 2 weeks

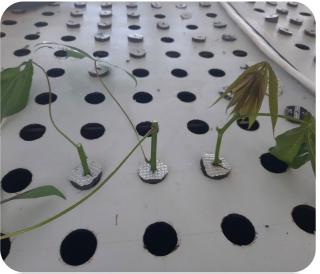
6. Transfer plants to field

- 1-2 month old plants are optimum
- Lignified cuttings are also possible

 pH is monitored every 2 days to keep at 6.0

- Watering daily
- Pesticide is applied if needed.

Step 1. Preparing input material



Map in HLARC screenhouse (input material in red)

Step 2: Transfer material to the system

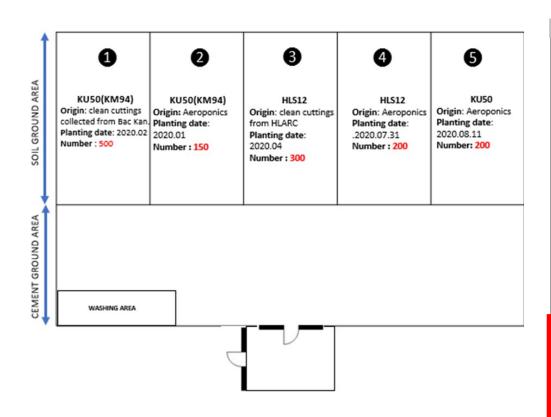
Cutting qualified stems into three mini parts (2-3 nodes each, keeping 1 leaf minimum)

Wrapping the stem with positioning foam

Putting young cuttings into position

Cover the whole system using plastic film.

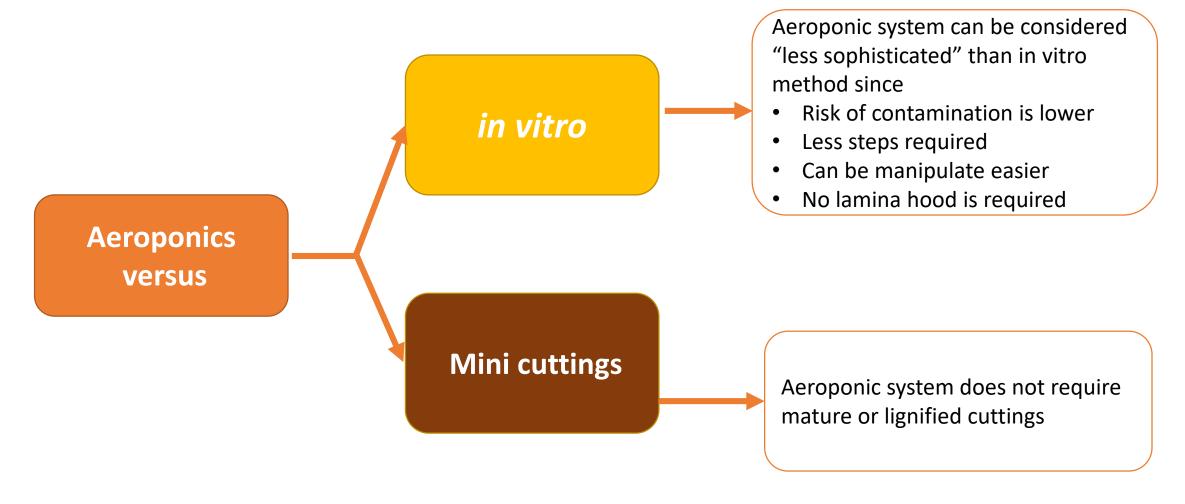
Step 3: 10 days to make root


Step 4: Transfer young plants to soil pots

Step 5: Adapt in screenhouse for 2 weeks

IV. Summary of Aeroponics Plants Management at HLARC

For the two recent cycles of multiplication cycles we achieved high survival rate at app. 85%.


Screenhouse plants summary

Area	Variety	Origin	Number of plants	Planting date	Average height (cm)*	Average node number*	App. number of young stems can be collected.
0	KU50(KM94)	Clean cuttings collected from Bac Kan	500	2020.02	50	13	150
0	KU50(KM94)	Aeroponics (HLARC)_2019 Trial (Mother plants were clean cuttings from HLARC field)	150	2020.01	55	15	50
6	HLS12	Clean cuttings from HLARC	300	2020.04	30	11	100
ø	HLS12	Young cuttings collected from Area 3	200	2020.07.31	35	n/a	n/a
6	KU 50	Young cuttings collected from Area ①	200	2020.08.21	n/a	n/a	n/a

^(*) The average height and node number are not the natural measurement since plants have been cut several times to serve as input material for aeroponics system

V. Advantages and Difficulties

1. Advantages:

V. Advantages and Difficulties

1. Difficulties and notice

Plants in the training period need to be monitored carefully

One technical problem can kill the whole batch

Rotten
symptoms can
appeared
easily if
monitoring is
not sufficient

Obstacles

Temperature and humidity within the propagation room needs to be controlled carefully

To wash the whole system (before and after propagating) is time consuming

Transferring into soils, if not careful, will break young roots easily

VI. HLARC'S VISION FOR AEROPONICS SYSTEM:

- Using aeroponics to rapidly propagating elite candidates (CMD tolerance with high yield)
- -> Maintaining clean stock to fight again CMD and sustain cassava production.

Thank you!